
Distributed Systems

Using Messages: Send/Receive
behavior

• When should send(message,mbox) return?
– When receiver gets message? (i.e. ack received)
– When message is safely buffered on destination?
– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that receiver actually

received the message?
– When can sender reuse the memory containing message?

• Mailbox provides 1-way communication from T1T2
– T1bufferT2
– Very similar to producer/consumer

• Send = V, Receive = P
• However, can’t tell if sender/receiver is local or not!

Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:

Producer:
int msg1[1000];
while(1) {

prepare message;
send(msg1,mbox);

}

Consumer:
int buffer[1000];
while(1) {

receive(buffer,mbox);
process message;

}

• No need for producer/consumer to keep track of
space in mailbox: handled by send/receive
– One of the roles of the window in TCP: window is size

of buffer on far end
– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message

Messaging for Request/Response communication

• What about two-way communication?
– Request/Response

• Read a file stored on a remote machine
• Request a web page from a remote web server

– Also called: client-server
• Client  requester, Server  responder
• Server provides “service” (file storage) to the client

• Example: File service
Client: (requesting the file)

char response[1000];

send(“read rutabaga”, server_mbox);
receive(response, client_mbox);

Server: (responding with the file)
char command[1000], answer[1000];

receive(command, server_mbox);
decode command;
read file into answer;
send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response

• General’s paradox:
– Constraints of problem:

• Two generals, on separate mountains
• Can only communicate via messengers
• Messengers can be captured

– Problem: need to coordinate attack
• If they attack at different times, they all die
• If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early

• Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?
– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!

General’s Paradox

Two-Phase Commit
• Since we can’t solve the General’s Paradox (i.e.

simultaneous action), let’s solve a related problem
– Distributed transaction: Two machines agree to do

something, or not do it, atomically
• Two-Phase Commit protocol does this

– Use a persistent, stable log on each machine to keep track
of whether commit has happened
• If a machine crashes, when it wakes up it first checks its log to

recover state of world at time of crash
– Prepare Phase:

• The global coordinator requests that all participants will promise to
commit or rollback the transaction

• Participants record promise in log, then acknowledge
• If anyone votes to abort, coordinator writes “Abort” in its log

and tells everyone to abort; each records “Abort” in log
– Commit Phase:

• After all participants respond that they are prepared, then the
coordinator writes “Commit” to its log

• Then asks all nodes to commit; they respond with ack
• After receive acks, coordinator writes “Got Commit” to log

– Log can be used to complete this process such that all
machines either commit or don’t commit

Two phase commit example
• Simple Example: ACanara Bank, BSBI

– Phase 1: Prepare Phase
• A writes “Begin transaction” to log

AB: OK to transfer funds to me?
• Not enough funds:

BA: transaction aborted; A writes “Abort” to log
• Enough funds:

B: Write new account balance & promise to commit to log
BA: OK, I can commit

– Phase 2: A can decide for both whether they will commit
• A: write new account balance to log
• Write “Commit” to log
• Send message to B that commit occurred; wait for ack
• Write “Got Commit” to log

• What if B crashes at beginning?
– Wakes up, does nothing; A will timeout, abort and retry

• What if A crashes at beginning of phase 2?
– Wakes up, sees that there is a transaction in progress; sends
“Abort” to B

• What if B crashes at beginning of phase 2?
– B comes back up, looks at log; when A sends it “Commit”

message, it will say, “oh, ok, commit”

Remote Procedure Call
• Raw messaging is a bit too low-level for

programming
– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive

• Better option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Client calls:

remoteFileSystemRead(“rutabaga”);
– Translated automatically into call on server:

fileSysRead(“rutabaga”);
• Implementation:

– Request-response message passing (under covers!)
– “Stub” provides glue on client/server

• Client stub is responsible for “marshalling” arguments and
“unmarshalling” the return values

• Server-side stub is responsible for “unmarshalling” arguments
and “marshalling” the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing objects,

copying arguments passed by reference, etc.

RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etw

o
rk

N
et

w
o

rk

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B

mbox1

mbox2

RPC Details
• Equivalence with regular procedure call

– ParametersRequest Message
– Result  Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box)

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition

language (IDL)”
• Contains, among other things, types of arguments/return

– Output: stub code in the appropriate source language
• Code for client to pack message, send it off, wait for result,

unpack result and return to caller
• Code for server to unpack message, call procedure, pack results,

send them off
• Cross-platform issues:

– What if client/server machines are different architectures
or in different languages?
• Convert everything to/from some canonical form
• Tag every item with an indication of how it is encoded (avoids

unnecessary conversions).

RPC Details (continued)
• How does client know which mbox to send to?

– Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)

– Binding: the process of converting a user-visible name into
a network endpoint
• This is another word for “naming” at network level
• Static: fixed at compile time
• Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service

• Name service provides dynamic translation of servicembox
– Why dynamic binding?

• Access control: check who is permitted to access service
• Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

• Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

• Choose unloaded server for each new request
• Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request

Problems with RPC
• Non-Atomic failures

– Different failure modes in distributed system than on a
single machine

– Consider many different types of failures
• User-level bug causes address space to crash
• Machine failure, kernel bug causes all processes on same machine

to fail
• Some machine is compromised by malicious party

– Before RPC: whole system would crash/die
– After RPC: One machine crashes/compromised while others

keep working
– Can easily result in inconsistent view of the world

• Did my cached data get written back or not?
• Did server do what I requested or not?

– Answer? Distributed transactions/Byzantine Commit
• Performance

– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware that RPC is not free

• Caching can help, but may make failure handling complex

Cross-Domain
Communication/Location Transparency

• How do address spaces communicate with one
another?
– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address
spaces on different machines or the same machine
– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)

mount

coeus:/sue
mount

kubi:/prog

mount

kubi:/jane

Distributed File Systems

• Distributed File System:
– Transparent access to files stored on a remote disk

• Naming choices (always an issue):
– Hostname:localname: Name files explicitly

• No location or migration transparency
– Mounting of remote file systems

• System manager mounts remote file system
by giving name and local mount point

• Transparent to user: all reads and writes
look like local reads and writes to user
e.g. /users/sue/foo/sue/foo on server

– A single, global name space: every file
in the world has unique name
• Location Transparency: servers

can change and files can move
without involving user

Network

Read File

Data
Client

Server

Virtual File System (VFS)

• VFS: Virtual abstraction similar to local file system
– Instead of “inodes” has “vnodes”
– Compatible with a variety of local and remote file systems

• provides object-oriented way of implementing file systems

• VFS allows the same system call interface (the API) to
be used for different types of file systems
– The API is to the VFS interface, rather than any specific type

of file system

Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use RPC to translate file system calls
– No local caching/can be caching at server-side

• Advantage: Server provides completely consistent
view of file system to multiple clients

• Problems? Performance!
– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Client

Server

Read (RPC)

Return (Data)

Client

cache

Server cache

F1:V1F1:V2

Use of caching to reduce network load

Read (RPC)

Return (Data)

Client

cache

Client

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done
locally, don’t need to do any network traffic…fast!

• Problems:
– Failure:

• Client caches have data not committed at server
– Cache consistency!

• Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

V1

read(f1)V1

read(f1)V1

OK

read(f1)V1

read(f1)V2

Failures
• What if server crashes? Can client wait until server

comes back up and continue as before?
– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after seek?

Then, when client does “read”, it will fail
– Message retries: suppose server crashes after it does UNIX

“rm foo”, but before acknowledgment?
• Message system will retry: send it again
• How does it know not to delete it again? (could solve with two-

phase commit protocol, but NFS takes a more ad hoc approach)

• Stateless protocol: A protocol in which all
information required to process a request is passed
with request
– Server keeps no state about client, except as hints to help

improve performance (e.g. a cache)
– Thus, if server crashes and restarted, requests can

continue where left off (in many cases)
• What if client crashes?

– Might lose modified data in client cache

Crash!

Schematic View of NFS Architecture

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close calls +
file descriptors

– VFS layer: distinguishes local from remote files
• Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
• Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to
server’s disk before results are returned to the client
– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice

changes! (more on this later)

NFS Continued
• NFS servers are stateless; each request provides all

arguments require for execution
– E.g. reads include information for entire operation, such as
ReadAt(inumber,position), not
Read(openfile)

– No need to perform network open() or close() on file –
each operation stands on its own

• Idempotent: Performing requests multiple times has
same effect as performing it exactly once
– Example: Server crashes between disk I/O and message

send, client resend read, server does operation again
– Example: Read and write file blocks: just re-read or re-

write file block – no side effects
– Example: What about “remove”? NFS does operation

twice and second time returns an advisory error
• Failure Model: Transparent to client system

– Is this a good idea? What if you are in the middle of
reading a file and server crashes?

– Options (NFS Provides both):
• Hang until server comes back up (next week?)
• Return an error. (Of course, most applications don’t know they are

talking over network)

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

• Polls server if data hasn’t been checked in last 3-30 seconds (exact
timeout it tunable parameter).

• Thus, when file is changed on one client, server is notified, but
other clients use old version of file until timeout.

– What if multiple clients write to same file?
• In NFS, can get either version (or parts of both)
• Completely arbitrary!

cache

F1:V2

Server

Client

cache

Client

cache

F1:V1

F1:V2

F1:V2

NFS Cache consistency

F1 still ok?

No: (F1:V2)

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done,

another CPU reads file?
• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the

same as if all processes are running on single system
• If read finishes before write starts, get old copy
• If read starts after write finishes, get new copy
• Otherwise, get either new or old copy

– For NFS:
• If read starts more than 30 seconds after write, get new copy;

otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:

Client 2:

Client 3: Read: parts of B or C

Time

NFS Pros and Cons

• NFS Pros:

– Simple, Highly portable

• NFS Cons:

– Sometimes inconsistent!

– Doesn’t scale to large # clients

• Must keep checking to see if caches out of date

• Server becomes bottleneck due to polling traffic

Andrew File System
• Andrew File System (AFS, late 80’s)  DCE DFS (commercial

product)
• Callbacks: Server records who has copy of file

– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only after the

file is closed
• As a result, do not get partial writes: all or nothing!
• Although, for processes on local machine, updates visible immediately to

other programs who have file open

• In AFS, everyone who has file open sees old version
– Don’t get newer versions until reopen file

Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
• Get file from server, set up callback with server

– On write followed by close:
• Send copy to server; tells all clients with copies to fetch new

version from server on next open (using callbacks)

• What if server crashes? Lose all callback state!
– Reconstruct callback information from client: go ask

everyone “who has which files cached?”
• AFS Pro: Relative to NFS, less server load:

– Disk as cache more files can be cached locally
– Callbacks  server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

World Wide Web

• Key idea: graphical front-end to RPC protocol

• What happens when a web server fails?
– System breaks!
– Solution: Transport or network-layer redirection

• Invisible to applications
• Can also help with scalability (load balancers)
• Must handle “sessions” (e.g., banking/e-commerce)

• Initial version: no caching
– Didn’t scale well – easy to overload servers

WWW Caching

• Use client-side caching to reduce number of interactions
between clients and servers and/or reduce the size of the
interactions:
– Time-to-Live (TTL) fields – HTTP “Expires” header from server
– Client polling – HTTP “If-Modified-Since” request headers from

clients
– Server refresh – HTML “META Refresh tag” causes periodic

client poll

• What is the polling frequency for clients and servers?
– Could be adaptive based upon a page’s age and its rate of

change

• Server load is still significant!

WWW Proxy Caches
• Place caches in the network to reduce server load

– But, increases latency in lightly loaded case
– Caches near servers called “reverse proxy caches”

• Offloads busy server machines

– Caches at the “edges” of the network called “content
distribution networks”
• Offloads servers and reduce client latency

• Challenges:
– Caching static traffic easy, but only ~40% of traffic
– Dynamic and multimedia is harder

• Multimedia is a big win: Megabytes versus Kilobytes

– Same cache consistency problems as before

• Caching is changing the Internet architecture
– Places functionality at higher levels of comm. protocols

Conclusion
• Remote Procedure Call (RPC): Call procedure on

remote machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments without

user programming (in stub)
• VFS: Virtual File System layer

– Provides mechanism which gives same system call interface
for different types of file systems

• Distributed File System:
– Transparent access to files stored on a remote disk

• NFS: Network File System
• AFS: Andrew File System

– Caching for performance
• Cache Consistency: Keeping contents of client caches

consistent with one another
– If multiple clients, some reading and some writing, how do

stale cached copies get updated?
– NFS: check periodically for changes
– AFS: clients register callbacks so can be notified by server

of changes

