Distributed Systems

Using Messages: Send/Receive

behavior
* When should send (message, mbox) return?

— When receiver gets message? (i.e. ack received)
— When message is safely buffered on destination?
— Right away, if message is buffered on source node?

e Actually two questions here:

— When can the sender be sure that receiver actually
received the message?

— When can sender reuse the memory containing message?

* Mailbox provides 1-way communication from T1—>T2
— T1—>buffer—>T2

— Very similar to producer/consumer
* Send =V, Receive =P
* However, can’t tell if sender/receiver is local or not!

Messaging for Producer-Consumer Style
* Using send/receive for producer-consumer style:

Producer:

int msgl[1000]; Send
while (1) { M
prepare message; €35aee

send (msgl, mbox) ;
}

Consumer:
int buffer[1000];
while (1) {

receive (buffer,mbox) ; Race
process message; eceive

Message

* No need for loroducer consumer to keep track of
space in mailbox: handled by send/receive

— One of the roles of the window in TCP: window is size
of buffer on far end

— Restricts sender to forward only what will fit in buffer

Messaging for Request/Response communication

 What about two-way communication?

— Request/Response
* Read a file stored on a remote machine
* Request a web page from a remote web server
— Also called: client-server
* Client =requester, Server =responder
» Server provides “service” (file storage) to the client

 Example: File service Request
Client: (requesting the file) File

char response[1000];

send (“read rutabaga”, server mbox),

recelve (response, client mbox) Get
Response

Server: (responding with the fl
char command[1000], answer[100],
recelve (command, server mbox) Receijve
decode command; Re
. : quest
read file 1nto answer;

send (answer, client mbox) ;
- Send
Response

General’s Paradox

* General’s paradox:

— Constraints of problem:
* Two generals, on separate mountains
e Canonly communicate via messengers
* Messengers can be captured
— Problem: need to coordinate attack
 If they attack at different times, they all die
 If they attack at same time, they win
— Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early

* Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?

— Remarkahly, “no”, even if all messages get through
= | — 1lam ok?
> : 20,17 jt is?
—

4Yreah, but what if you

Don’t get this ack?

— No way to be sure last message gets through!

Two-Phase Commit
e Since we can’t solve the General’s Paradox (i.e.

simultaneous action), let’s solve a related problem
— Distributed transaction: Two machines agree to do
something, or not do it, atomically

* Two-Phase Commit Erotocol does this
— Use a persistent, stable log on each machine to keep track

of whether commit has happened
* If a machine crashes, when it wakes up it first checks its log to
recover state of world at time of crash
— Prepare Phase:
* The global coordinator requests that all participants will promise to
commit or rollback the transaction
e Participants record promise in log, then acknowledge
* If anyone votes to abort, coordinator writes “Abort” inits log
and tells everyone to abort; each records “Abort” in log
— Commit Phase:
» After all participants respond that they are prepared, then the
coordinator writes “Commit” toitslog
* Then asks all nodes to commit; they respond with ack
» After receive acks, coordinator writes “Got Commit” to log

— Log can be used to complete this process such that all
machines either commit or don’t commit

Two phase commit example

* Simple Example: A=Canara Bank, B=SBI
— Phase 1: Prepare Phase

* Awrites “"Begin transaction” tolog
A—B: OK to transfer funds to me?
* Not enough funds:

B—A: transaction aborted; A writes “Abort” to log
* Enough funds:

B: Write new account balance & promise to commit to log
B—A: OK, | can commit

— Phase 2: A can decide for both whether they will commit
* A:write new account balance to log
e Write “"Commit” tolog

* Send message to B that commit occurred; wait for ack
* Write “"Got Commit” tolog

 What if B crashes at beginning?

— Wakes up, does nothing; A will timeout, abort and retry
 What if A crashes at beginning of phase 27?

— Wakes up, sees that there is a transaction in progress; sends
“Abort”toB

 What if B crashes at beginning of phase 2°?

— B comes back up, looks at log; when A sends it “*Commit”
message, it will say, “oh, ok, commit”

Remote Procedure Call

Raw messaging is a bit too low-level for
programming

— Must wrap up information into message at source

— Must decide what to do with message at destination

— May need to sit and wait for multiple messages to arrive

Better option: Remote Procedure Call (RPC)
— Calls a procedure on a remote machine

— Client calls:
remoteFileSystem—Read (“rutabaga”) ;

— Translated automatically into call on server:
fileSys—Read (“rutabaga”) ;

Implementation:

— Request-response message passing (under covers!)

— “Stub” provides glue on c |ent/server

* Client stub is responsible for “marshalling” arguments and
“unmarshalling” the return values

. Server 5|de stub is responsible for ‘unmarshalling” arguments
“marshal mF " the return values.
\"

I\/Iarshallmg involves (dependmg on system)
o)

— Converting values to a canaonical form, serializing objects,
copying arguments passed by reference, etc.

RPC Information Flow

Client
(caller)

call

bundle
args

» Client
Stub

Server
(callee)

return

return

send

<

unbundle
ret vals

bundle
ret vals

»l Server

call

Stub

receive

send

<

unbundle
args

receive

Packet
Handler

Packet
Handler

RPC Details

* Equivalence with regular procedure call

— Parameters < Request Message

— Result < Reply message

— Name of Procedure: Passed in request message
— Return Address: mbox2 (client return mail box)

* Stub generator: Compiler that generates stubs

— Input: interface definitions in an “interface definition
language (IDL)”
e Contains, among other things, types of arguments/return
— Output: stub code in the appropriate source language

* Code for client to pack message, send it off, wait for result,
unpack result and return to caller

* Code for server to unpack message, call procedure, pack results,
send them off.
¢ Cross-platform ISSUes:

— What if client/server machines are different architectures
or in different languages?

* Convert everything to/from some canonical form
* Tag every item with an indication of how it is encoded (avoids
unnecessary conversions).

RPC Details (continued)

How does client know which mbox to send to?

— Need to translate name of remote service into network
endéooint (Remote machine, port, possibly other info)

— Binding: the process of converting a user-visible name into

a network endpoint
* Thisis another word for “naming” at network level
 Static: fixed at compile time
* Dynamic: performed at runtime
Dynamic Binding
— Most RPC systems use dynamic binding via name service
* Name service provides dynamic translation of service—>mbox
— Why dynamic binding?
* Access control: check who is permitted to access service
* Fail-over: If server fails, use a different one
What if there are multiple servers?
— Could give flexibility at binding time
* Choose unloaded server for each new client
— Could provide same mbox (router level redirect)
e Choose unloaded server for each new request
* Only works if no state carried from one call to next

What if multiple clients?
— Pass pointer to client-specific return mbox in request

roblems with RPC

Non-Atomic gﬂures
— Different failure modes in distributed system than on a
single machine

— Consider many different types of failures
» User-level bug causes address space to crash

* Machine failure, kernel bug causes all processes on same machine
to fail

* Some machine is compromised by malicious party
— Before RPC: whole system would crash/die

— After RPC: One machine crashes/compromised while others
keep working

— Caneasily result in inconsistent view of the world
* Did my cached data get written back or not?
* Did server do what | requested or not?

— Answer? Distributed transactions/Byzantine Commit
Performance
— Cost of Procedure call « same-machine RPC « network RPC

— Means programmers must be aware that RPC is not free
e Caching can help, but may make failure handling complex

Cross-vbomain
Communication/Location Transparency

How do address spaces communicate with one
another?

— Shared Memory with Semaphores, monitors, etc...
— File System
— Pipes (1-way communication)

“Remote” procedure call (2-way communication)

RPC s can be used to communicate between address
spaces on different machines or the same machine

— Services can be run wherever it’s most appropriate

— Access to local and remote services looks the same
Examples of modern RPC systems:

— CORBA (Common Object Request Broker Architecture)

— DCOM (Distributed COM)
— RMI (Java Remote Method Invocation)

Distributed File Systems

Read File >

Client
Server

e Distributed File System:
— Transparent access to files stored on a remote disk

* Naming choices (always an issue): -

mount

— Hostname:localname: Name files explicitly
kubi:/jane

* No chation or migration transparency
— Mounting of remote file systems

e System manager mounts remote file system
by giving name and local mount point sue

* Transparent to user: all reads and writes
look like local reads and writes to user
e.g. /users/sue/foo— /sue/foo on server prog

in the world has unigue name

mount
coeus:/sue

* Location Transparency: servers
can change and files can move
without involving user

— A single, global name space: every file
|_m,ount
kubi:/prog

Virtual File System (VFS)

file-system interface

VFS interface

local file system local file system remote file system
type 1 type 2 type 1

e VFS: Virtual abstraction similar to local file system
— Instead of “inodes” has “vnodes”
— Compatible with a variety of local and remote file systems
* provides object-oriented way of implementing file systems
* VFS allows the same system call interface (the API) to
be used for different types of file systems

— The APl is to the VFS interface, rather than any specific type
of file system

Simple Distributed File System

515

Server | cache

Client
e Remote Disk: Reads and writes forwarded to server

— Use RPC to translate file system calls
— No local caching/can be caching at server-side
* Advantage: Server provides completely consistent
view of file system to multiple clients
* Problems? Performance!
— Going over network is slower than going to local memory
— Lots of network traffic/not well pipelined
— Server can be a bottleneck

Use of caching to reduce network load

read(f1) —V1 ‘
cache = Read (RPC)
read(f1)>V1 < —
read(fl)—>V1 <:>
read(f1)—>V1

cache

F1:V2

cache
write(f1) —0K
read(f1)—>V2 Client

* |dea: Use caching to reduce network load
— In practice: use buffer cache at source and destination
* Advantage: if open/read/write/close can be done
locally, don’t need to do any network traffic...fast!
* Problems:

— Failure:
e Client caches have data not committed at server
— Cache consistency!
* Client caches not consistent with server/each other

Failures

 What if server crashes? Can client wait_.unti server%
comes back up and continue as before?
— Any data in server memory but not on disk can be lost

— Shared state across RPC; What if server crashes after seek?
Then, when client does “read”, it will fail

— Message retries: suppose server crashes after it does UNIX
rm foo”, but before acknowledgment?
* Message system will retry: send it again

 How does It know not to delete it again? (could solve with two-
phase commit protocol, but NFS takes a more ad hoc approach)

e Stateless protocol: A protocol in which all
information required to process a request is passed
with request

— Server keeps no state gbout client, except as hints to help
improve performance (e.g. a cache)

— Thus, if server crashes and restarted, requests can
continue where left off (in many cases)

 What if client crashes?
— Might lose modified data in client cache

Schematic View of NFS Architecture

client

system-calls interface

!

VFS interface

Y

4

}

other types of
file systems

UNIX file
system

NFS
client

server

|

RPC/XDR

|

— VFSinterface
NFS UNIX file
server system
RPC/XDR

T

—

network

—

Network File System (NFS)

* Three Layers for NFS system

— UNIXfile-system interface: open, read, write, close calls +
file descriptors

— VFS layer: distinguishes local from remote files
e Callsthe NFS protocol procedures for remote requests

— NFS service layer: bottom layer of the architecture
* Implements the NFS protocol
* NFS Protocol: RPC for file operations on server
— Reading/searching a directory
— manipulating links and directories
— accessing file attributes/reading and writing files

* Write-through caching: Modified data committed to
server’s disk before results are returned to the client
— lose some of the advantages of caching
— time to perform write() can be long

— Need some mechanism for readers to eventually notice
changes! (more on this later)

NFS Continued

* NFS servers are stateless; each request provides all
argEuments rec,wre_ for exe_cutlon _ _
— E.g. reads include information for entire operation, such as
ReadAt (1number, position), not
Read (openfile) _
— No need to perform network open() or close() on file —
each operation stands on its own _ .
* |dempotent: Performing requests multiple times has
same effect as performing it exactly once
— Example: Server crashes between disk I/O and message
send, client resend read, server does operation again
— Example: Read and write file blocks: just re-read or re-
write file block — no side effects .
— Example: What about “remove”? NFS does operation
twice and second time returns an advisory error

* Failure Model: Transparent to client system
— Is thjs a good idea? What if you are in the middle of
reading a file and server crashes?
— Options (NFS Provides both):

* Hang until server comes back up (next week?)
e Return an error. (Of course, most applications don’t know they are
talking over network)

NFS Cache consistency

* NFS protocol: weak consistency

— Client polls server periodically to check for changes

* Polls server if data hasn’t been checked in last 3-30 seconds (exact
timeout it tunable parameter).

* Thus, when file is changed on one client, server is notified, but
other clients use old version of file until timeout.

cache

==
No: (F1:V2)

\‘?\ F1 still ok?

o
(@)

&

cache

F1:V2

Client c .
P g Server cache
- U
\% s P‘ \g

Client

— What if multiple clients write to same file?

* In NFS, can get either version (or parts of both)
 Completely arbitrary!

Sequential Ordering Constraints

* What sort of cache coherence might we expect?

— i.e. what if one CPU changes file, and before it’s done,
another CPU reads file?

 Example: Start with file contents = “A”

Client 1: | Read: gets A I| Write B | | Read: parts of B or C
Client 2: | Read: gets A or B Il Write C |
Client3: | Read: parts of Bor C |
>
Time

 What would we actually want?

— Assume we want distributed system to behave exactly the
same as if all processes are running on single system
* If read finishes before write starts, get old copy
* If read starts after write finishes, get new copy
* Otherwise, get either new or old copy

— For NFS:

* If read starts more than 30 seconds after write, get new copy;
otherwise, could get partial update

NFS Pros and Cons

* NFS Pros:
— Simple, Highly portable
* NFS Cons:

— Sometimes inconsistent!

— Doesn’t scale to large # clients

* Must keep checkingto see if caches out of date
* Server becomes bottleneck due to polling traffic

Andrew File System

Andrew File System (AFS, late 80’s) — DCE DFS (commercial
product)

Callbacks: Server records who has copy of file

— On changes, server immediately tells all with old copy

— No polling bandwidth (continuous checking) needed

Write through on close
— Changes not propagated to server until close()

— Session semantics: updates visible to other clients only after the
file is closed
* Asaresult, do not get partial writes: all or nothing!

* Although, for processes on local machine, updates visible immediately to
other programs who have file open

In AFS, everyone who has file open sees old version
— Don’t get newer versions until reopen file

Andrew File System (con’t)
Data cached on local disk of client as well as memory

— On open with a cache miss (file not on local disk):
* Get file from server, set up callback with server

— On write followed by close:

* Send copy to server; tells all clients with copies to fetch new
version from server on next open (using callbacks)

What if server crashes? Lose all callback state!

— Reconstruct callback information from client: go ask
everyone “who has which files cached?”

AFS Pro: Relative to NFS, less server load:

— Disk as cache = more files can be cached locally
— Callbacks = server not involved if file is read-only

For both AFS and NFS: central server is bottleneck!
— Performance: all writes—server, cache misses—server
— Availability: Server is single point of failure

— Cost: server machine’s high cost relative to workstation

World Wide Web

* Keyidea: graphical front-end to RPC protocol

 What happens when a web server fails?

— System breaks!

— Solution: Transport or network-layer redirection

* Invisible to applications
e Can also help with scalability (load balancers)
e Must handle “sessions” (e.g., banking/e-commerce)

* |nitial version: no caching
— Didn’t scale well — easy to overload servers

WWW Caching

Use client-side caching to reduce number of interactions
between clients and servers and/or reduce the size of the
interactions:

— Time-to-Live (TTL) fields — HTTP “Expires” header from server

— Client polling — HTTP “If-Modified-Since” request headers from
clients

— Server refresh — HTML “META Refresh tag” causes periodic
client poll

What is the polling frequency for clients and servers?

— Could be adaptive based upon a page’s age and its rate of
change

Server load is still significant!

WWW Proxy Caches

 Place caches in the networkto reduce server load
— But, increases latency in lightly loaded case

— Caches near servers called “reverse proxy caches”
» Offloads busy server machines

— Caches at the “edges” of the network called “content
distribution networks”

e Offloads servers and reduce client latency
* Challenges:
— Caching static traffic easy, but only ~40% of traffic

— Dynamic and multimedia is harder
* Multimedia is a big win: Megabytes versus Kilobytes

— Same cache consistency problems as before

e Caching is changing the Internet architecture
— Places functionality at higher levels of comm. protocols

Conclusion

Remote Procedure Call (RPC): Call procedure on

remote machine

— Provides same interface as procedure .

— Automatic packing and unpacking of arguments without

user programming (in stub)

VFS: Virtual File System layer _

— Provides mechanism which gives same system call interface
for different types of file systems

Distributed File System:

— TransEarent access to files stored on a remote disk
* NFS: Network File System
e AFS: Andrew File System

— Caching for performance _
Cache Consistency: Keeping contents of client caches

consistent with one another N

— If multiple clients, some readmg and some writing, how do
stale cached copies glet updated?

— NFS: check periodically for changes .

— AFS:; clients register callbacks so can be notified by server
of changes

